IK-930 is a Novel TEAD Inhibitor for the Treatment of Cancers Harboring Mutations in the Hippo Signal Transduction Pathway

Jeffery Ecsedy, PhD
Chief Development Officer, Ikena Oncology

Benjamin S. Amidon, Marta Sanchez-Martin, Wilmin Bartolini, Sakeena Syed, Karen McGovern, Lan Xu, Jeffrey Ecsedy, X. Michelle Zhang, Alex Constan, Alfredo C. Castro
Disclosure Information

Jeffrey Ecsedy
I have the following relevant financial relationships to disclose:
 Employee of: Ikena Oncology
 Consultant for: Cytoimmune Sciences
This Presentation contains forward-looking statements and information. All statements other than statements of historical facts contained in this Presentation, including statements regarding our strategy, future financial condition, future operations, projected costs, prospects, plans, objectives of management and expected market size, are forward-looking statements. In some cases, you can identify forward-looking statements by terminology such as “may,” “will,” “should,” “expect,” “intend,” “plan,” “anticipate,” “believe,” “estimate,” “target,” “seek,” “predict,” “potential,” “continue” or the negative of these terms or other comparable terminology. Although we believe that the expectations reflected in these forward-looking statements are reasonable, these statements relate to our strategy, future operations, future financial position, future revenue, projected costs, prospects, plans, objectives of management and expected market size, and involve known and unknown risks, uncertainties and other factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by these forward-looking statements. Forward-looking statements in this Presentation include, but are not limited to, statements about: the initiation, timing, progress, results, and cost of our research and development programs and our current and future preclinical and clinical studies, including statements regarding the timing of initiation and completion of studies or trials and related preparatory work, the period during which the results of the trials will become available, and our research and development programs; our ability to efficiently discover and develop product candidates; our ability to initiate, recruit and enroll patients in and conduct our clinical trials at the pace that we project; our ability to obtain and maintain regulatory approval of our product candidates; our ability to compete with companies currently marketing or engaged in the development of treatments that our product candidates are designed to target; our reliance on third parties to conduct our clinical trials and to manufacture drug substance for use in our clinical trials; the size and growth potential of the markets for our product candidates and our ability to serve those markets; the ability and willingness of our third-party strategic collaborators to continue research and development activities relating to our development candidates and product candidates; our ability to attract collaborators with development, regulatory and commercialization expertise; our financial performance; developments and projections relating to our competitors or our industry; the effect of the COVID-19 pandemic, including mitigation efforts and economic effects, on any of the foregoing or other aspects of our business operations, including but not limited to our preclinical studies or current and future clinical trials. We caution the recipient not to place considerable reliance on the forward-looking statements contained in this presentation. The forward-looking statements in this Presentation speak only as of the date of this document, and we undertake no obligation to update or revise any of these statements. Our business is subject to substantial risks and uncertainties, including those referenced above.

Certain information contained in this Presentation relates to or is based on estimates, projections and other information concerning the Company’s industry, its business and the markets for its programs and product candidates and studies, publications, surveys and other data obtained from third-party sources and the Company’s own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this Presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this Presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal research is reliable, such research has not been verified by any independent source.

These forward-looking statements are based on the beliefs of our management as well as assumptions made by and information currently available to us. Although we believe the expectations reflected in such forward-looking statements are reasonable, we can give no assurance that such expectations will prove to be correct. If such assumptions do not fully materialize or prove incorrect, the events or circumstances referred to in the forward-looking statements may not occur. We undertake no obligation to update publicly any forward-looking statements for any reason after the date of this presentation to conform these statements to actual results or to changes in our expectations, except as required by law. Accordingly, readers are cautioned not to place undue reliance on these forward-looking statements. Additional risks and uncertainties that could affect our business are included under the caption “Risk Factors” in our most recent report filed with the Securities and Exchange Commission.
Hippo Signal Transduction Pathway in Cancer

- Multiple activating signals drive YAP/TAZ nuclear localization \rightarrow TEAD binding \rightarrow gene expression of proliferation / pro-survival pathways

- TEAD transcription dysregulated in many cancers
 Numerous tumor suppressor / oncogenes lead to TEAD activation
 Increased nuclear YAP1/TAZ, TEAD activity associated with poor outcome

- Key mechanism of therapeutic resistance
Genetic Alterations in Hippo Signal Transduction Pathway Drive Oncogenesis in Patients Across Multiple Indications

- **Meningioma**
 - High frequency of NF2 deficiency
 - Most common CNS tumor, accounting for ~one-third of primary CNS tumors

- **Soft Tissue Sarcoma**
 - ~90% of epithelioid hemangioendothelioma, or EHE, have TAZ-CAMTA1 fusions
 - 10% of EHE have YAP1-TFE3 fusions

- **Non-small Cell Lung Cancer**
 - ~6% YAP1 and 29% TAZ amplification
 - Drives resistance to EGFR therapies

- **Malignant Mesothelioma**
 - ~40% have NF2 loss of function mutations
 - Associated with poor patient prognosis
 - In both epithelioid and sarcomatoid/byphasic

~125,000 Newly Diagnosed Cancer Patients (US Only / Year) with Deregulated Hippo Pathway
Translational Data to Drive Indication Selection

Bioinformatics Analyses

NF2, YAP1, TAZ, LATS1/2, MST1/2, BAP1 Alterations

YAP1/TAZ Activity Score

Indications of Interest

MESO, HNSCC, CHOL, NSCl.C, Pancreatic

YAP/TAZ Nuclear Localization

High YAP1 nuclear protein expression indicative of pathway activation in select indications

<table>
<thead>
<tr>
<th></th>
<th>%YAP1 +2 +3</th>
<th>%TAZ +2 +3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meningioma</td>
<td>76</td>
<td>8</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>46</td>
<td>19</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>NSCLC</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td>Pancreas</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>Thymoma</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Liver/Hepatocellular</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

*Signature derived from Pham et al 2021
IK-930 is an Oral, Selective, Potent TEAD Inhibitor

Binding the Central Lipid Pocket of TEAD

Potent TEAD Inhibition

Robust Inhibition
TEAD Target Gene Expression

Selective Activity in Hippo-Mutated Cells
IK-930 Demonstrated Anti-Tumor Activity in Tumor Models with Hippo Pathway Mutations

Potential for Monotherapy Across Genetic Mutations
IK-930 has Favorable ADME/PK Profile

Cyp, hERG and Safety Panel Profiling Suggest Low Risk for Drug-drug Interaction

<table>
<thead>
<tr>
<th>CYP Inhibition, IC₅₀</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyp1A2</td>
<td>>10 uM</td>
</tr>
<tr>
<td>Cyp2B6</td>
<td>>10 uM</td>
</tr>
<tr>
<td>Cyp2C9</td>
<td>>10 uM</td>
</tr>
<tr>
<td>Cyp2C19</td>
<td>7.6 uM</td>
</tr>
<tr>
<td>Cyp2D6</td>
<td>>10 uM</td>
</tr>
<tr>
<td>Cyp3A4-M</td>
<td>9.0 uM</td>
</tr>
<tr>
<td>Cyp3A4-T</td>
<td>>10 uM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nonclinical PK Summary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td></td>
</tr>
<tr>
<td>T1/2</td>
<td>1.6 h</td>
</tr>
<tr>
<td>Vd</td>
<td>2.7 L/kg</td>
</tr>
<tr>
<td>Oral bioavailability</td>
<td>55%</td>
</tr>
<tr>
<td>Rat</td>
<td></td>
</tr>
<tr>
<td>T1/2</td>
<td>1.7 h</td>
</tr>
<tr>
<td>Vd</td>
<td>2.8 L/kg</td>
</tr>
<tr>
<td>Oral bioavailability</td>
<td>56%</td>
</tr>
<tr>
<td>Dog</td>
<td></td>
</tr>
<tr>
<td>T1/2</td>
<td>1.8 h</td>
</tr>
<tr>
<td>Vd</td>
<td>3.1 L/kg</td>
</tr>
<tr>
<td>Oral bioavailability</td>
<td>52%</td>
</tr>
<tr>
<td>Monkey</td>
<td></td>
</tr>
<tr>
<td>T1/2</td>
<td>2.2 h</td>
</tr>
<tr>
<td>Vd</td>
<td>2.8 L/Kg</td>
</tr>
<tr>
<td>Oral bioavailability</td>
<td>49%</td>
</tr>
</tbody>
</table>

- Highly selective across a receptor, enzyme, ion channel safety panel (> 50 fold over H226 IC₅₀)
- Minimal inhibition of hERG in automated patch clamp assay (IC₅₀ > 200 fold over H226 IC₅₀)
- Minimal Cyp inhibition - low potential to drug-drug-interactions
- Not a substrate of P-gp or BCRP transporters
- Moderate and similar plasma protein binding across species
- Very good oral bioavailability in mouse, rat, dog, and monkey
- Brain penetrant
Role of Hippo Pathway in Therapeutic Resistance; Multiple Opportunities for Combination with IK-930

Screens identifying Hippo-mediated resistance

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Condition</th>
<th>Hit</th>
<th>Format</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>BRAFi</td>
<td>NF2</td>
<td>CRISPR</td>
<td>Shalem, O. et al. (2014) Science, 343, 84</td>
</tr>
<tr>
<td>PDAC</td>
<td>Kras KO</td>
<td>YAP amp</td>
<td>GEMM</td>
<td>Kapoor, A. et al. (2014) Cell, 158,185</td>
</tr>
<tr>
<td>NSCLC</td>
<td>EGFRi</td>
<td>TEAD Gene signature</td>
<td>RNASeq</td>
<td>Kurppa, K et al. (2020) Cell, 37 (104-22)</td>
</tr>
</tbody>
</table>

* EMICERI*: Increase MOB38 (component of MST1/2 and LATS1/2 inhibitor complex) expression

Combined TEAD and RTK or KRAS / MAPK inhibition synthetically lethal in BRAF- and KRAS mutant tumors

MEK Inhibitor Induces YAP1 Nuclear Localization and TEAD Dependent Transcription

HCT116 cells (KRAS G13D)

Vehicle

Trametinib (5 nM)

DAPI

YAP1

DAPI/YAP1

TEAD-Luciferase

Cell Viability

Trametinib Log(nM)

Cell Viability (%Max)

Vehicle

Trametinib (5 nM)

TEAD-Luciferase (%Max)

IK930 (μM)

Vehicle

Trametinib (5 nM)

Cell Viability (%)
IK-930 Enhances Apoptosis in MEK Inhibitor -Treated KRAS Mutant Cells

HCT116: KRAS G13D CRC Model
Apoptosis Induction (HCT116)

LOVO: Human KRAS G13D CRC Model
Apoptosis Induction (LoVo)

A549: KRAS G12S NSCLC Model
Apoptosis Induction (A549)

Calu-1: KRAS G12C NSCLC Model
Apoptosis Induction (Calu-1)
Increased Anti-Tumor Effect of IK-930 in Combination with MEK Inhibitor in KRAS Mutant Tumors In Vivo

Impact Across Tumor Models for KRASm CRC and NSCLC

<table>
<thead>
<tr>
<th>Model</th>
<th>HCT116</th>
<th>A549</th>
<th>Lovo</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo TGI Combination</td>
<td>83% (1mg/kg MEKi)</td>
<td>78% (0.5mg/kg MEKi)</td>
<td>75% (1mg/kg MEKi)</td>
</tr>
</tbody>
</table>
Developing First-in-Class TEAD Inhibitor for Genetically Altered Cancers and Therapeutic Resistance

Monotherapy strategy focused on NF2-deficient orphan indications including NF2 deficient MPM, EHE and other solid tumors with prevalent NF2 and YAP/TAZ fusion genes.

Combination strategy to explore multiple with targeted agent combos to reverse mechanism of resistance in broader indications.

NCT05228015
Acknowledgements

• Ben Amidon
• Michael Burke
• Alfredo Castro
• Jill Cavanaugh
• Yueh-Tyng Chien
• Alex Constan
• Victor DeJesus
• Andrew Hanna
• Alex Ivliev
• Holly Koblish
• Karim Malek
• Mark Manfredi
• Karen McGovern
• Mihir Rajurkar
• Sabine Ruppel
• Marta Sanchez-Martin
• Sergio Santillana
• Vidya Subramanian
• Sakeena Syed
• Maude Tessier
• Lan Xu
• Nathan Young
• Michelle Zhang

Collaborators

• George Demitri (DFCI)
• Kevan Shokat (UCSF)
• Josep Tabernero (VHIO)