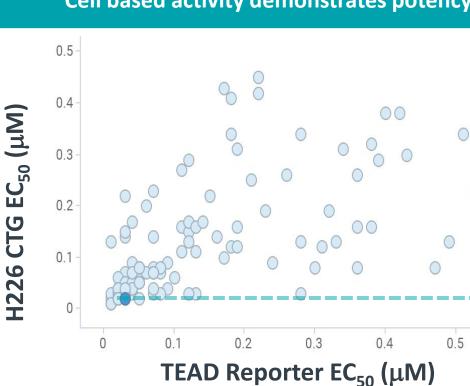

Potent small molecule TEAD inhibitors targeting the Hippo pathway exhibit anti-proliferation in vitro and anti-tumor effect in vivo

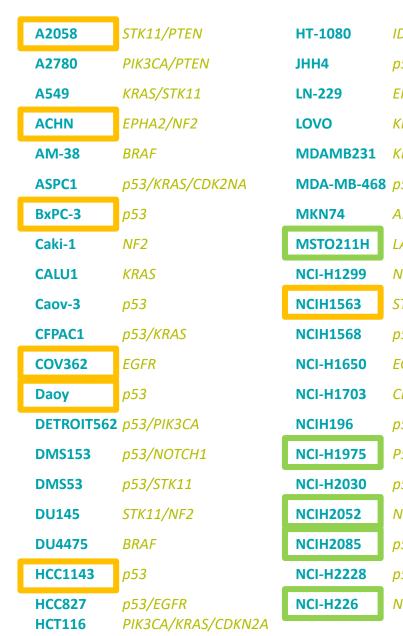
<u>Ben Amidon</u>, Sakeena Syed, Jill Cavanaugh, Hyejin Frosch, Prabitha Natarajan, Jeffrey Ecsedy, Karen McGovern, Alfredo C. Castro Ikena Oncology, Inc. Boston, MA 02210

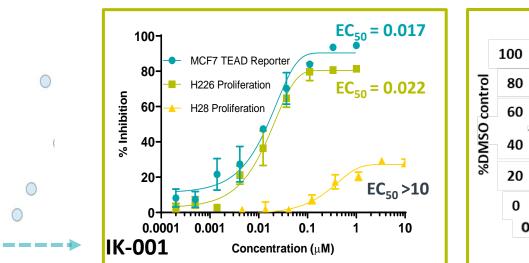
Hippo pathway overview

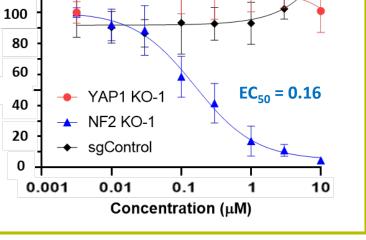


- Important signaling pathway for modulating cell growth and survival; often promiscuously activated by oncogenes to promote tumor growth.
- Highly mutated pathway across many indications in cancer; pathway activation is correlated with overall poor patient outcome.
- Multiple layers of regulation control the pathway by restricting nuclear translocation of YAP or TAZ, including sequestration and proteasomedependent degradation.
- YAP/TAZ interaction with a member of the TEAD family of cotranscription factors drives essential gene transcription.
- Dysregulation can be induced by different mechanisms, such as lossof-function mutations in upstream regulatory proteins of YAP/TAZ-TEAD, miRNA leading to loss of upstream gene translation, or loss of post-translational modifications of YAP/TAZ.

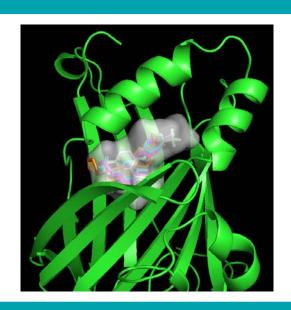
Ikena TEAD Inhibitors


- Novel compounds bind in the central lipid (palmitate) binding pocket of TEAD family members.
- Small molecule inhibitors disrupt YAP-TEAD dependent transcription.

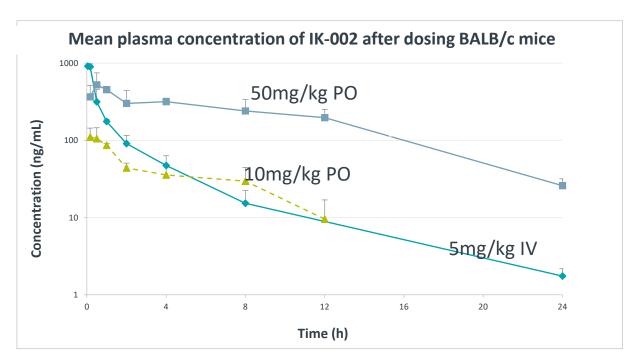

• Inhibition of TEAD-dependent reporter activity (MCF7, NF2 WT) correlates with inhibition of cell proliferation in H226 cells (NF2-deficient)

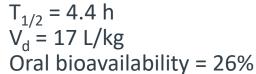

- Multiple high quality TEAD2 co-crystal structures with Ikena compounds
- Co-crystal structures with Ikena's irreversible and reversible inhibitors bound in central lipid pocket
- Observed binding interactions are consistent with established SAR

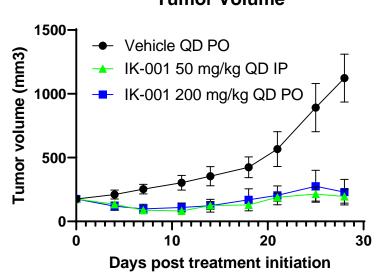
Anti-proliferation pilot cell line screen reveals additional candidate models of sensitivity for in vivo testing

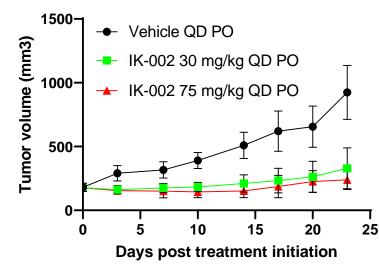

Cell based activity demonstrates potency and selective anti-proliferative effects dependent on Hippo dysregulation

- Effect of IK-001 on cell proliferation is dependent on presence of Hippo/NF2 mutation (H28 cell line is NF2 wildtype)
- NF2 knockout in H28 cells confers sensitivity to TEAD inhibition


Co-crystal structures demonstrate compounds bind to lipid pocket



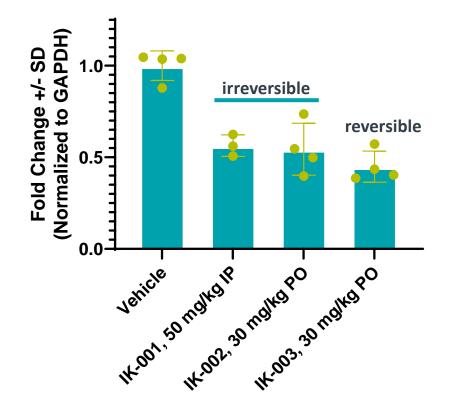

DH1/NRAS	NCIH2452	EGFR
53	NCI-H28	VHL
ERBB2/TEAD2	NCI-H292	NF2
KRAS/FBXW7	NCIH647	KRAS
<pre>KRAS/NF2/(atypicalBRAF)</pre>	OE33	p53
53	NCI-H2172	P53/EGFR/FBXW7
APC	OVMANA	ΡΙΚЗСΑ
ATS1-PSEN	PANC-1	p53/KRAS
VRAS	SK-HEP-1	BRAF/NF2
STK11	SKOV-3	p53/PIK3CA/FBXW7
o53	SNU182	p53
EGFR	SW1353	CDKN2A/IDH2
CDKN2A	SW1573	KRAS/STK11
o53/PTEN	SW579	p53
P53/EGFR/PIK3CA/CDKN2A	T24	HRAS
o53/KRAS	TE1	p53/Rb
NF2	U251	p53/PTEN
53	U87MG	PTEN
053	YD8	p53
NF2	ZR751	PTEN


- Cell lines were chosen based on the Cancer Dependency Score (https://depmap.org/p ortal/achilles/) and sampling of known interacting oncogenes
- Anti-proliferative effects of IK-001 were evaluated in a 3-day Cell TiterGlo[™] assay. Cell lines with an EC₅₀ <0.2µM or <1.0µM
- are indicated Analysis is ongoing to explore in vitro to in vivo correlation as well as TEAD-specific expression profiles

Ikena compounds demonstrate good ADME/PK properties

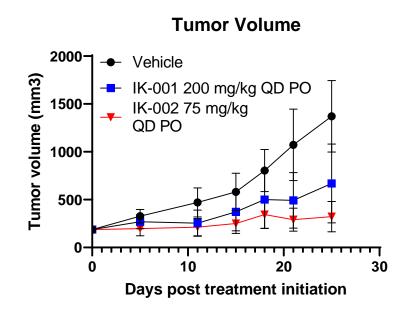
- Co-crystal structures demonstrate inhibitors bind in central lipid binding pocket • Oral administration leads to suppression of TEAD-dependent transcription in H226 tumors
- Efficacy was demonstrated in two mesothelioma xenograft models at well tolerated doses
- Ikena's TEAD inhibitors are being developed for cancer therapy in selected cancer patients with Hippo driven tumors • A development candidate is expected in the second half of 2020

Abstract #6441 Poster #2474


Plasma levels of IK-002 were quantified from mice after receiving a single administration of compound

Antitumor Activity in H226 Xenograft

Tumor Volume


Tumor Volume

Ikena compounds display TEAD-dependent pharmacodynamic effects

- NCI-H226 tumor bearing mice were dosed for 3 consecutive days and tumors were collected and process 4h after the last dose. RNA was isolated and expression of TEAD-dependent genes was assessed by qPCR.
- Similar effects noted on CYR61, AMOTL2

Antitumor Activity in MSTO-211H Xenograft

- ✓ Robust efficacy with Ikena compounds at well tolerated daily oral doses
- ✓ No effect on body weight or organ damage throughout studies
- ✓ Dose response efficacy studies with advanced leads are in progress

Conclusions and Future Steps

• Ikena identified novel and selective small molecule inhibitors of TEAD with different modes of inhibition (reversible and irreversible) with low nanomolar potency and good oral bioavailability

correspondence to: BAmidon@ikenaoncology.com